MASTER OF COMPUTER APPLICATIONS-Syllabus

Semester 1 (S3)					
Program	Course Code	Course Name	Credit	Sem	Th /P /Pro
MCA	OMC001	Fundamentals of Computers and Programming	-	1	Th
MCA	OMC101	Object-Oriented Programming using C++	3	1	Th
MCA	OMC102	Data Structures	3	1	Th
MCA	OMC103	Discrete Mathematics	3	1	Th
MCA	OMC104	Operating Systems	3	1	Th
MCA	OMC105	Digital Logic and Computer Organization	3	1	Th
MCA	OMC121	C++ Laboratory	2	1	Р
MCA	OMC122	Data Structures Laboratory	2	1	Р

Fundamentals of Computers and Programming

Course Code: OMC 001		Course Title: Fundamentals of Computers and Programming
Course	Objectives:	
1.	Fo differentiate between the varying hardware tec	hnologies used over the
	generations of the computer	
2.	Γο explain how functional units contribute to a co	omputer's successful
	operation	
3.	To identify the software and hardware component	ts of the computer
4.	Fo describe the role of OS in running software progra	ms
5.	Fo understand the fundamentals of C programming a	nd write re-usable code
l	using C functions	
6.	To demonstrate operations such as sorting, searching	g using arrays
7.	To identify an appropriate C programming construct t	o solve a given problem
Sr. No	Units	Unit Objectives
1	Unit 1: Origin of Computer and its functioning	Students will be able to
	 Definition of a computer 	understand the evolution,
	 Characteristics of a computer 	of the computer
	 Capabilities of a computer 	
	 Components of a computer 	
	 Functional units of a computer 	
	Evolution	
	 Generations of a computer 	
	 Types of computer based on 	
	o Usage	
	 Capability 	
1		

	 Applications in various fields 	
	Limitations	
2	Unit 2: I/O devices and Memory System	Students shall be able to
2	 Unit 2: I/O devices and Memory System Input devices such as Keyboard Mouse Joystick Scanner Microphone Webcam Output devices such as Monitor & its types Printer & its types Speaker Plotter Projector Sound card Types of memory Primary (RAM, ROM) Secondary (Hard disk) Memory hierarchy Storage devices such as Magnetic disk tape Hard disk 	Students shall be able to discuss various input and output devices for data communication between the computer and user. Also learn different types of storage devices and their characteristics.
	 Floppy disk Dit Dute KD MD OD end their relation 	
	• Bit, Byte, KB, MB, GB and their relation	
3	Unit 3: Computer software concepts (Operating	Students shall be able to
	System (OS) & Programming language)	differentiate between the
	Introduction to Software	two types of computer software, list the types of
	 Types of Software 	OS and identify the two
	 System Software 	,

	 Application Software 	main categories of
	Concept of free & proprietary software	programming languages.
	Definition of OS	
	 Need and functions of OS 	
	 Types of OS 	
	 Definition of a Programming language 	
	 Types of Programming languages 	
	 Low-level languages 	
	 High-level languages 	
	Translators	
	 Assembler 	
	o Compiler	
	 Interpreter 	
4	Unit 4: Algorithms	Students shall be able to
	Definition of Algorithm	design an algorithm for a
	Properties of an Algorithm	given problem.
	Examples of Algorithm	
5	Unit 5: Flowcharts	Students shall be able to
	Definition of Flowchart	ramiliarize the flowchart
	 Advantages of flowchart 	flowchart for a given
	Flowchart symbols	problem.
	 Examples of flowchart (conditional 	
	statements, loops etc)	
6	Unit 6: Introduction to C Programming	Students shall be able to
	language	learn the basic structure
	Characteristics of C	and elements of a C
	Structure of a C program	programming language.
	 Life cycle of a C program 	
	 First C program – "Hello World" 	
	 Commands to execute a C program 	

	C Fundamentals	
	 C Character set 	
	 Constants 	
	 Variables 	
	 Identifiers 	
	 Keywords 	
	 Escape sequences 	
	 Data types 	
	Macros	
7	Unit 7: C I/O Functions	Students shall be able to
	 Types of I/O functions 	explain Read/Write
	 Unformatted 	operations on data using
	 Formatted 	different I/O functions.
	 Unformatted I/O functions 	
	o getchar()	
	 putchar() 	
	o gets()	
	\circ puts()	
	 putch() 	
	 Formatted I/O functions 	
	 Format specifiers 	
	 scanf() 	
	 printf() 	
8	Unit 8: Operators and Expressions in C	Students shall be able to
	Arithmetic operators	evaluate an expression
	Relational operators	comprising different types
	Logical operators	
	 Assignment operators 	
	Bitwise operators	
	 Increment and Decrement operators 	
	Conditional operator	

	Precedence and Associativity	
	Evaluation of expressions	
9	Unit 9: Control statements in C	Students shall be able to
	 Branching statements If statement 	understand the concepts of branching, looping
	 If then else statement Nested if-else Else-if ladder switch Looping constructs for while do while Jump statements break continue goto 	and how to use it in a programming language.
	o return	
10	Unit 10: Arrays and Strings	Students shall be able to
	 Single dimensional array Array declaration Accessing elements of an array Initialization Array operations (insert, delete, sort and search) Two-dimensional arrays Declaration of a 2D array Initialization Operations on Matrices (addition, product, transpose) 	declare and define an array to store homogeneous data. Also demonstrate the use of string and string handling functions
	 or operations on matrices (addition, product, transpose) Strings 	

	 Declaration of strings 	
	 Initialization 	
	 Input and Output of strings 	
	 Formatting strings 	
	 Edit set conversion code 	
	 String handling functions 	
11	Unit 11: Functions and Storage classes in C	Students shall be able to
	 Advantages of functions 	demonstrate different ways of passing parameters to a
	Library functions	function and return a value
	 User-defined functions 	from a function.
	 Function declaration or prototype 	
	 Function definition 	
	 Function call 	
	Return statement	
	 Types of functions 	
	\circ Function with no arguments and no	
	return value	
	\circ Function with no arguments but with	
	a return value	
	\circ Function with arguments but no	
	return value	
	 Function with arguments and return 	
	value	
	 Call by value and call by reference 	
	 Passing array to a function 	
	Recursion	
	 Advantages & disadvantages 	
	 Iteration v/s Recursion 	
	 Examples (Factorial, Fibonacci 	
	series)	
	Storage classes	
	 Automatic 	

	 Static 	
	○ Register	
	 External 	
	\circ Scope of variables with different	
	storage classes	
12	Unit 12: Structures and Unions	Students shall be able to
	 Need of structures 	explain how to use
	 Defining a structure 	store heterogeneous data
	 Declaration of structure variables 	in a program.
	 Initialization of structure variables 	
	 Accessing structure members 	
	 Assignment of structure variables 	
	Size of a structure	
	Array of structures	
	 Structure with arrays 	
	Nested structure	
	 Structures and functions 	
	 Self-referential structures 	
	 Typedef keyword 	
	Bitfields	
	 Defining a union 	
	 Declaration of union variables 	
	 Initialization and access of union 	
	variables	
	Size of a union	
	 Nested unions 	
	 Union inside union 	
	 Structure inside union 	
	 Union inside structure 	
	Difference between Structure and Union	

13	Unit 13: C Pointers	Students shall be able to
	 Need of Pointers 	discuss on how to declare
	Pointer variables	pointers and use them for
		dynamic memory
	 Assigning address to pointer 	allocation. Also understand
	variables	the pointer arithmetic with
	Dereferencing pointer variables	arrays.
	 Derererencing pointer variables Deinter erithmetie 	
	Pointer antimetic	
	Pointer comparisons	
	Chain of Pointers	
	Pointers and Array	
	 Pointers and String 	
	 Pointers and Function 	
	Array of Pointers	
	Void pointers	
	Null pointers	
	 Dangling pointer 	
	 Dynamic memory allocation 	
	○ malloc()	
	○ calloc()	
	○ realloc()	
	o free()	
14	Unit 14: File management in C	Students shall be able to
	 Types of files 	discuss how to open, close
	File modes	a file. Read/write a
	Open a file	character, string, integer
	Close a file	using file bandling
	 End Of File (EOF) 	functions.
	Character I/O functions	
	\circ fnutc()	
	\circ facto()	

 Integer I/O functions 	
o putw()	
o getw()	
String I/O functions	
o fputs()	
○ fgets()	
 Formatted I/O functions 	
 fprintf() 	
 fscanf() 	
 Block Read/Write functions 	
o fwrite()	
o fread()	
 Random access to a file 	
o fseek()	
o ftell()	
 rewind() 	
Error handling in files	
Command line arguments	
Text Book(s)	
1. Norton & Peter. "Introduction to Computers". 6 th Editio	on, McGraw-Hill, 2009
2. Leon, Alexis & Leon, Mathews, "Introduction to Cor	mputers", 1 st Edition, Vikas
Publishing, 2009	,, . <u></u> ,
3. Yashavant Kanetkar, "Let Us C". 14 th Edition. BPE	3 Publication, 2016
4. E. Balagurusamy, "Programming in ANSI C". 6 th Edition	on, McGraw-Hill, 2015
	,, 2010
Reference Book(s)	

1. P K.Sinha & Priti Sinha, "Computer Fundamentals", 8th Edition, BPB, 2004

 Brian W Kernighan & Dennis M Ritchie, "The C Programming Language", 2nd Edition, Prentice Hall, 1988

Object-Oriented Programming Using C++

Cou	rse Code: OMC 101	Course Title: Object- Oriented Programming Using C++
Cou	rse Objectives:	
1	. Understand the difference between the top-down a	and bottom-up approach
2	. Describe the object-oriented programming approa	ch in connection with
	C++	
3	. Apply the concepts of object-oriented programming	ng
4	. Illustrate the process of data file manipulations us	sing C++
5	. Apply virtual and pure virtual function & complex	programming situations
Sr.	Units	Unit Objectives
No		
1	Unit 1: Object Oriented Programming	Students will learn about the
	Procedure Oriented vs. Object Oriented	significance of Object
	Programming,	Oriented Programming
	 Object Oriented Programming Concepts, 	Languages.
	 Benefits of Object oriented programming, 	
	Object Oriented Languages.	
	Unit 2: Introduction to C++	Students will be able to learn
2		the representation of Data in
	 Structure of a C++ program 	C++ and basic programming
	 Data Types 	structures.
	 Operators and Control Structures. 	
2	Unit 3: Objects and Classes	Students will be able to
5	Defining Classes	Define Classes, Hiding Data,
	- Deminy Classes	and Binding Data with
	 Instantiating Objects 	Functions.
	Mambar Eurotiona	

	 Accessibility labels 	
	 Static Members 	
	Unit 4: Constructors and Destructors	Students will learn to initialize
+	 Purpose of Constructors Default Constructor Parameterized Constructors Copy Constructor, Destructor Memory Management 	the objects and deallocate the memory whenever an object is destroyed.
5	 Concept of Reusability Types of Inheritance Single and Multiple Inheritance Multilevel Inheritance 	extend or modify the attributes and behaviors which are defined in other class/classes.
6	 Unit 6: Operator Overloading Function and Operator Overloading Overloading Unary and Binary Operators 	Students will learn to use operators to work for user- defined classes.
7	 Unit 7: Polymorphism and Virtual Function Abstract Class Function Overriding Dynamic Binding Pure Virtual Functions 	Students will be able to write a function that can evaluate or be applied to values of different types and redefine a function of the base class in the derived class.
8	 Types of I/O Formatting Outputs File Pointers Buffer 	access data from files and format the data.
9	Unit 9: Templates and STL	students will be able to create a single function or single

	 Function and Class Templates 	class to work with different
	 Use of Templates 	data types using templates
	 Standard Template Library 	
10	Unit 10: Exception Handling	Students will learn to handle
	Exceptions in C++ Programs	run-time anomalies or
	 Try and Catch Expressions 	abnormal conditions that a
	 Exceptions with argument 	program encounters during
		its execution.
Text	Book(s)	
1	. E. Balagurusamy, "Object Oriented Programming with McGraw Education Hill, 2011.	n C++", 4 th edition, Tata
2	. Herbert Schildt – The Complete Reference C++, Four	th Edition, Tata MgGraw
	Hill, 2003	
Refe	rence Book(s)	
1	. Robert Lafore - Object Oriented Programming with C-	⊦+, Fourth Edition, Pearson
	Education India, 2008	
2	Stephen Prata "C++ Primer Plus: Teach Yourself Ob	iect Oriented

 Stephen Prata, "C++ Primer Plus: Teach Yourself Object Oriented Programming", 2nd Edition, Waite Group, 1995

Data Structures

Cou	rse Code: OMC 102	Course Title: Data Structures
Cou	rse Objectives:	
	. Describe the concept of Data Structures and assess how	v the choice of data structures
	impacts the performance of programs	
2	2. Compare and contrast the merits and demerits of various	data structures in terms of time
	and memory complexity.	
3	Identify and propose appropriate data structures for prov	iding the solution to real-world
	problems.	
4	 Implement operations like searching, insertion, deletion, 	traversing mechanism, etc. on
	Various data structures 5 Be familiar with advanced data structures such as balan	ced search trees hash tables
	AVL trees, priority queues, ADT, etc.	
6	5. To augment the merits of particular data structures on ot	her data structures to develop
	innovation in the subject of study.	
Sr.	Units	Unit Objectives
No		
1	Unit 1: Introduction	Students will learn Dynamic
	Basic Terminology	Memory Management, Data
	 Pointer and dynamic memory allocation 	Organisation, and Efficiency.
	Elementary Data Organization	
	 Algorithm Complexity and Time-Space trade- 	
	offs	
2	Unit 2: Arrays	Students will be able to learn
-	Array Definition	and use Single and
	 Analy Definition Representation and Analysis 	Multidimensional Arrays.
	 Single and Multidimensional Arrays 	
	 Sparse Matrices 	
	Unit 3: Recursion	Students will be able to
3		develop programs using
		Recursion.
	 I all recursion 	

4	Unit 4: Stacks	Students will be able to
	 Array Representation of stack 	develop programs using
	 Linked Representation of Stack 	Stacks for various
	 Infix. Prefix. and Postfix Expressions 	applications.
-	Unit 5: Queues	Students will be able to learn
5		different types of Queues and
	 Array and linked representation and of queues 	use them to develop
	 Circular queue 	programs for various
	 D-queue 	applications.
	 Priority Queue 	
6	Unit 6: Linked list	Students will be able to
	 Representation of Singly Linked Lists 	represent data using Linked
	 Two-way Header List 	Lists and develop programs
	 Doubly linked list 	for various applications.
	 Generalized linked list 	
7	Unit 7: Trees	Students will be able to
/		represent data using Trees,
	 Binary Trees 	learn to balance the trees,
	 Binary Search tree 	and code the information
	 Algebraic Expressions 	using Huffman Trees.
	 Complete Binary Tree 	
	 Extended Binary Trees 	
	 Threaded Binary trees 	
	 AVL Tree 	
	 Huffman algorithm & Huffman tree 	
8	Unit 8: Searching and Hashing	Students will be able to use
	 Sequential search 	different searching
	 Binary search 	techniques.
	 Hash Table 	
	 Hash Functions 	
	 Collision Resolution Strategies 	

9	Unit 9: Sorting	Students will be able to use	
	Insertion Sort	different sorting methods to	
	 Bubble Sorting 	arrange the data.	
	Ouick Sort		
	 Two Way Merge Sort 		
	 Heap Sort 		
	Unit 10: Graphs	Students will be able to	
10		represent the data using	
	 BFS 	Graphs and develop	
	 DFS 	applications.	
	 Spanning tree 		
	 Minimum Spanning tree, Kruskal's Algorithm, 		
	Prim's Algorithm		
	 Applications of graph 		
11	Unit 11: File Structures	Students will be able to	
	Physical Storage Media	learn different techniques	
	 File Organization Organization of records into 	of Data Organisation.	
	Blocks		
	 Sequential Files 		
	 Primary indices 		
	 Secondary indices 		
	 B+ Tree index Files 		
	 B Tree index Files 		
	 Indexing and Hashing Comparisons 		
1	Text Book(s)		
	, , , , , , , , , , , , , , , , , , ,	alastia Dubliahara 1000	
	A M Topophaum et al "data structures and program de	aigolia Publishers, 1999	
	education 2006	sign in C, Z ^{equilion} , realson	
F	Reference Book(s)		
-	1. Lipschutz, "data structures", 1 st Edition, Tata McGraw Hill Education,2014		

2. R. Kruse et al, "data structures and program design in C", 2nd Edition, Pearson India,2006

3. K Loudon, "Mastering algorithm with C", O'Reilly publishers, 1999

Discrete Mathematics

Cou	rse Code: OMC 103	Course Title: Discrete Mathematics
Cou	rse Objectives:	
	I. Apply the fundamentals of set theory for the given pro	blem.
	2. Solve the given problem by applying Logical Reasoni	ng.
3	3. To prove the correctness of programs using Logical F	Reasoning.
2	4. Apply techniques of counting in the analysis of algorit	hms.
Ę	5. Apply Binary relations to establish relationships betwee	een different entities.
Sr.	Units	Unit Objectives
No		
1	Unit 1: Fundamentals	Students will be able to
	 Sets and Subsets 	understand the background
	 Operations on sets 	Mathematical Structures
	 Algebraic properties of set operations 	Mathematical Officiales.
	 The Addition principle 	
	 The Addition Principle for Disjoint sets 	
	 Sequences 	
	 Finite and Infinite sequences 	
	 Characteristic Functions 	
	 Computer Representation of sets and 	
	subsets	
	 Strings and Regular Expressions 	
2	Unit 2: Finite Automata	Students will be able to
	 Deterministic Finite Automata (DFA) 	design the simplest abstract
	 Non Deterministic Finite Automata (NFA) 	machines to recognize
		patterns
3	Unit 3: Logic	Students learn the methods
	 Propositions and Logical Operations Logical Connectives and Compound Statements 	of reasoning and use them to prove theorems in mathematics and prove the

	 Quantifiers 	correctness of algorithms in
	Conditional Statements	computer science.
	Methods of Proof	
	Mathematical Induction	
4	Unit 4: Counting	Students will be able to apply
	 Permutations 	the techniques of counting in
	 Combinations 	the analysis of algorithms.
	Pigeonhole Principle	
5	Unit 5: Relations and Digraphs	Students will be able to
	 Product Sets and Partitions Relations and Digraphs Relations Relations Sets Arising from Relations The Matrix of a Relation Digraphs Paths in Digraphs Properties of Relations Reflexive and Irreflexive Relations Symmetric, Asymmetric, and Antisymmetric Relations Transitive Relations 	learn and develop binary relations among different entities.
	 Equivalence Relations and Partitions 	
6	Unit 6: Functions	Students will be able to
	 Functions Special Types of Functions Invertible Functions Functions for Computer Science Hashing Functions 	understand the concept of functions and use them as basic building blocks in real-life applications.

7	Unit 7: Graph Theory	Students will be able to
	 Graphs 	develop real-time
	\circ Graphs	applications.
	 Subgraphs and Quotient Graphs 	
	 Euler paths and Circuits 	
	 Hamiltonian Paths and Circuits 	
	 Coloring of Graphs 	
	\circ Chromatic Polynomials	
		-
8	Unit 8: Order Relations and Structures	Students will be able to
	 Partially Ordered Sets 	construct the logical
	 Hasse Diagrams 	circuits
	 Topological Sorting 	circuits.
	 Isomorphism 	
9	Unit 9: Trees	Students will be able to
	 Trees 	develop applications using
	 Labelled Trees 	tree searching methods.
	 Computer Representation of Binary 	
	Positional Trees	
	 Tree Searching 	
	 Searching General Trees 	
	 Pseudocode Versions 	
	Unit 10: Semigroups and Groups	Students will be able to
10	onit to: Semigroups and Groups	apply the basics of group
	 Binary Operations 	theory in coding theory.
	 Tables 	, , ,
	 Properties of Binary Operations 	
	 Semigroups 	
	\circ Isomorphism and Homomorphism	
	 Products and Quotients of Semigroups 	
	 Groups. 	

Text Book(s):

- Kollman, Busby and Ross, "Discrete Mathematical Structures", 3rd edition, Pearson Publishers, 2015
- Gremaldi, Ramana, "Discrete and Combinatorial Mathematics", 5th edition, Pearson Publishers, 2006

Reference Book(s):

- Susanna Epp, "Discrete Mathematics with Applications", 4th Edition, Wadsworth Publishing Co Inc, 2010
- Kenneth Rosen, "Discrete Mathematics and its Applications",8th Edition, McGraw Hill, 2021

Operating Systems

Cou	rse Code: OMC 104	Course Title: Operating Systems
Cou	rse Objectives:	
Stuc	lents will learn various services provided by operating systems	s and the functions performed
by th	ne different components of operating systems.	
6.	Unito	Unit Objectives
No	Units	Onit Objectives
4	Unit 1: Introduction	Students will be able to
1	 Definition What is an OS Goals of OS Components of Computer System Types of operating systems Batch Operating System Multiprogramming Operating System Multitasking / Time-Sharing Operating System Real Time Operating System Distributed Operating System Parallel Operating System Embedded Operating System Operating system components Process Management Memory Management Secondary Storage Management Networking Protection System 	Students will be able to define the operating system and identify different types of operating systems, various components, and services provided by operating systems.
	Services of Operating System Program execution	
	• Program execution • $I/O/$ operation	

	 File system manipulation 	
	 Communication 	
	 Error detection 	
	 Resource allocation 	
	 Accounting 	
	• Protection	
	 User interface 	
	System Calls	
	 Definition explanation in brief 	
	 Introduction to Threads 	
2	Unit 2: Process Concept	Students will be able to
-	Process definition	demonstrate different
	Process Control Block	states of a process and
	Process States	algorithm performance.
	Scheduling queues	
	Schedulers	
	 Long term schedulers 	
	 CPU schedulers 	
	Context switch	
	CPU scheduling criteria	
	Scheduling algorithms	
	o FCFS	
	∘ SJF	
	∘ RR	
	 Priority Scheduling 	
3	Unit 3: Inter-process communication	Students will be able to
	Communication	explain communication
	 Shared memory 	among processes and
	 Message passing 	examine process
	 Process Synchronization 	- synon on zation
	Background	

	The Critical-Section problem	
	 Two process solutions (general) 	
	Semaphores	
	 o Types 	
	 Classical problems of synchronization 	
	(explanation without algorithm)	
	 Readers' and writers' problem 	
4	Unit 4: Deadlock	Students will be able to
	System model	compare the deadlock
	Characterization	problems and their
	 Necessary conditions 	
	 Resources allocation graph 	
	 Methods for handling deadlock 	
	Deadlock prevention	
	Avoidance and Detection	
	 Safestate 	
	Bankers algorithm	
	Recovery from deadlock	
	 Process termination 	
	 Resource preemption 	
5	Unit 5: Memory Management	Students will be able to
	Memory management	select a memory
	 Overlays 	management scheme for
	 Logical and Physical Address Space 	the specific system.
	Swapping	
	Contiguous allocation	
	 Single partition 	
	 Multiple partitions 	
	 First fit 	
	 Best fit 	
	 Worst fit 	

	Paging	
	 Hardware support 	
	 Paging hardware with TLB 	
	Segmentation	
	o Definition	
	 Difference between paging and 	
	segmentation	
6	Unit 6: Virtual Memory	Students will be able to
0		evaluate the cost and
	Virtual Memory Background	complexity of demand
	Demand paging	paging.
	 Page fault 	
	 Page replacement algorithms 	
	○ FIFO	
	o LRU	
	 Optimal 	
	Thrashing	
	 Definition 	
7	Unit 7: File Systems	Students will be able to
	File concept	distinguish various aspects
		of files and directory
	\sim File operations	structure.
	Access methods	
8	Unit 8: Disk Management, Protection and Security	Students will be able to
8	 Unit 8: Disk Management, Protection and Security Disk structure 	Students will be able to review the disk scheduling
8	 Unit 8: Disk Management, Protection and Security Disk structure Disk scheduling methods. 	Students will be able to review the disk scheduling algorithms and interpret the
8	 Unit 8: Disk Management, Protection and Security Disk structure Disk scheduling methods. FCFS (with Example) 	Students will be able to review the disk scheduling algorithms and interpret the protection mechanism

o SCAN	provided by the operating								
o C-SCAN	system.								
∘ LOOK									
Protection and Security									
 Goals of protection 									
 Domain of protection 									
 Access matrix 									
Text Book(s)									
1. Silberschatz, Galvin" Operating Systems Concept, 7 th edition, John Wiley and sons									
Reference Book(s)									
1. William Stalling: Operating Systems: Internal and design principles, 7th edition									

2. D M Dhamdhere, "Operating Systems: A Concept-Based Approach" TMH

PHI

Digital Logic and Computer Organization

Programme	Master of Computer Applications
Semester	Ι
Course Title	Digital Logic and Computer Organization
Course Code	OMC105
Course Credits	3
Course Type	Core Theory Course

1. Course Summary

This course aims to provide the learners with a foundation of Digital logic and computer organization. The initial part of this course deals with data representation, basic components of digital systems, and their implementation. Students learn Boolean algebra, logic gates, implementation of combinational and sequential digital circuits using logic gates, and use of k-map for logic expression minimization. The later part discusses computer generations, functional components, their characteristics, performance, and interactions. Students learn addressing modes, input-output, and memory organization. Students gain an understanding of fundamental architectural techniques used to build today's high-performance processors and systems.

2. Course Outcomes (COs)

After the successful completion of this course, the student will be able to:

- **CO-1.** List types of digital circuits and functional units of a computer [L-1]
- **CO-2.** Explain the operation of the arithmetic unit including the algorithms & implementation of fixed-point and floating-point addition, subtraction, multiplication & division [L-2]
- **CO-3.** Demonstrate the hierarchical memory system [L-3]
- CO-4. Analyze the different ways of I/O operations and their effect on performance [L-4]
- **CO-5.** Design simple logic circuits using gates, multiplexers, demultiplexers, encoders, and decoders[L-6]

3. Course Contents

Sr.	Units	Unit Outcomes				
No		After the successful completion of the				
		unit, the learner should be able to:				
1	Unit 1: Data Representation	1. List the different formats to represent				
	 Number Systems-Binary, Octal, Decimal, Hexadecimal, Interconversion Binary Addition and Subtraction Benrecentation of Negative Numbers 12 	numerical data and convert from one to another.2. Demonstrate 1's- complement and 2's complement representation of				
	• Representation of Negative Numbers-1's Complement, 2's Complement	 a. Identify different character codes 				

2	Unit 2: Logic Circuits	1. Represent logic gates using logic						
	• Logic gates	symbols, truth tables, and logic						
	• Types of Logic Gates-Basic Gates, Universal gates,	expressions.						
	Special gates	2. Explain De Morgan's theorems.						
	• Boolean Algebra- Use of Boolean Algebra, Identities	3. Simplify logic expressions using laws						
	of Boolean Algebra, DeMorgan's Theorems, Forms	and identities of Boolean Algebra.						
	of Boolean Expressions, Minterms, and Maxterms	4. Apply Karnaugh maps to obtain						
	• Simplification of Logic Expressions-Introduction to	minimal expressions						
	K-maps, Minimization Using K-maps							
3	Unit 3: Combinational and Sequential Circuits	1. Implement the following circuits:						
	• Combinational Circuits-Adders and Subtractors,	Half adder and Full adder						
	Decoder, Encoder, Multiplexer, Demultiplexer	Multiplexer and Demultiplexer						
	Sequential Circuits	Decoder and encoder						
	 Flip-Flops-Types of Flip Flops 	2. Represent the different flip-flops						
	• Registers	using truth tables.						
	• Counters							
4	Unit 4: The Computer and Generations	1. Explain the functional units of the						
	• The von Neumann Computer	Von Neumann machine						
	• Development of Computer Hardware-The First	2. Explain computer evolution through						
	Generation, The Second Generation, The Third	various generations						
	Generation, The Fourth Generation, Beyond the							
-	Fourth Generation							
5	Unit 5: Basic Structure of Computers	1. Explain basic functional units and						
	• Computer Types	organization of computer.						
	• Functional Units	2. Explain the use of a bus for data						
	Basic Operational Concepts	2 Identify the various factors affecting						
	• Bus structure	performance						
	• Performance	performance.						
6	• Multiprocessing and Multi computers							
6	Unit 6: Machine Instructions and Programs:	1. Outline the different concepts related						
	• Memory Locations and Addresses	to the instructions of a computer.						
	• Memory Operations	2. Explain the instructions sequencing.						
	• Instructions and Instruction sequencing	5. Identify the various addressing						
7	• Addressing Modes.							
/	Unit /: input/Output Organization:	1. Demonstrate the different ways of						
	• Accessing I/O Devices	2 Explain the interrunt machanism						
	• Interrupts	2. Explain the interrupt mechanism 3. Explain DMA operation						
	• Enabling and Disabling Interrupts							
	Handling Multiple Devices							
	Controlling Device Requests							
0	Direct Memory Access Unit 9: Momony System:	1. Identify the different tornes of many set						
ð	Dunt 8: Memory System:	1. Identify the different types of memory						
	• Dasic Concepts, • Semiconductor DAM Momories	2 Explain memory and how the memory						
	Semiconductor KAW Memories, Dead Only Memories	2. Explain memory and now the memory hierarchy reduces effective memory						
	• Read Only Memories,	latency.						
	• Speed, Size, and Cost,	3. Explain the role of cache memory						
	• Cache Memories							
0	• v intual Memory	1. Eveloin processor accorization						
9	Unit 9: Basic Processing Unit:	1. Explain processor organization						

	 Some Fundamental Concepts, Execution of Complete Instruction, Multiple Bus Organization, Hard-wired Control. 	 Explain multiple bus organizations. Differentiate hard-wired control and microprogrammed control 					
	Micro programmed Control						
10	Unit 10: Fundamentals of computer architecture	1. Explain the various architectures					
	and pipelining	2. Highlight the importance of RISC					
	• VonNeumann vs. Harvard	architecture					
	• RISC vs. CISC	3. Explain the importance of					
	• Importance of RISC	pipelining.					
	• Pipelining: Basic concepts of pipelining						

4. Course Articulation Matrix (CO-PO-PSO Map)

	Programme Outcomes (POs)											Programme Specific Outcomes (PSOs)				
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2	PSO- 3	PSO- 4
CO-1	3										2		3	2	2	2
CO-2	3										2		3	2	2	2
CO-3	3	3	1								2		3	2	2	2
CO-4	3	3	2	2							2		3	2	2	2
CO-5	3	3	3	3					1		3		3	3	2	2
3: Very Strong Contribution, 2: Strong Contribution, 1: Moderate Contribution																

5. Course Resources

a. Essential Reading

- 1. Course Self-Learning Material
- 2. M Morris Mano: Digital Logic and Computer Design, 4th Edition, Pearson Education, 2014.
- 3. Computer Organization, Carl Hamacher, ZvonkoVranesic, SafwatZaky, 5th Edition, Tata McGraw Hill, 2017.

b. Recommended Reading

- 1. William Stallings, (2016) Computer Organization & Architecture, 10th ed., PHI.
- 2. Charles H. Roth Jr and Larry L Kinney, (2014) *Fundamentals of Logic Design.* 7th ed., Cengage Learning.

c. Magazines and Journals

- 1. IEEE transaction on Very Large-Scale Integration (VLSI) Systems
- 2. IEEE transactions on Parallel and Distributed Systems

d. Websites

1. https://www.coursera.org/

2. http://nptel.ac.in/

e. Other Electronic Resources

- 1. https://ocw.mit.edu/index.htm
- 2. Course Video Lectures on ILearn